
IMM
INFORMATICS AND MATHEMATICAL MODELLING

Technical University of Denmark
DK-2800 Kgs. Lyngby – Denmark

DACE
A MATLAB Kriging Toolbox

Version 2.0, August 1, 2002

Søren N. Lophaven
Hans Bruun Nielsen
Jacob Søndergaard

0
20

40
60

80
100

0

20

40

60

80

100
34

36

38

40

42

44

46

Technical Report IMM-TR-2002-12

Please direct communication to Hans Bruun Nielsen (hbn@imm.dtu.dk)

Contents

1. Introduction 1

2. Modelling and Prediction 1

2.1. The Kriging Predictor . 2

2.2. Regression Models . 5

2.3. Correlation Models . 6

3. Generalized Least Squares Fit 9

3.1. Computational Aspects . 10

4. Experimental Design 12

4.1. Rectangular Grid . 12

4.2. Latin Hypercube Sampling . 12

5. Reference Manual 13

5.1. Model Construction . 14

5.2. Evaluate the Model . 15

5.3. Regression Models . 16

5.4. Correlation Models . 17

5.5. Experimental Design . 18

5.6. Auxiliary Functions . 19

5.7. Data Files . 20

6. Examples of Usage 21

6.1. Work-through Example . 21

6.2. Adding a Regression Function . 24

7. Notation 24

1. Introduction

This report describes the background for and use of the software package DACE
(Design and Analysis of Computer Experiments), which is a Matlab toolbox for
working with kriging approximations to computer models.

The typical use of this software is to construct a kriging approximation model based
on data from a computer experiment, and to use this approximation model as a
surrogate for the computer model. Here, a computer experiment is a collection of
pairs of input and responses from runs of a computer model. Both the input and
the response from the computer model are likely to be high dimensional.

The computer models we address are deterministic, and thus a response from a
model lacks random error, i.e., repeated runs for the same input parameters gives
the same response from the model.

Often the approximation models are needed as a part of a design problem, in which
the best set of parameters for running the computer model is determined. This
is for example problems where a computer model is fitted to physical data. This
design problem is related to the more general problem of predicting output from a
computer model at untried inputs.

In Section 2 we consider models for computer experiments and efficient predictors,
Section 3 discusses generalized least squares and implementation aspects, and in
Section 4 we consider experimental design for the predictors. Section 5 is a reference
manual for the toolbox, and finally examples of usage and list of notation are given
in Sections 6 and 7.

2. Modelling and Prediction

Given a set of m design sites S = [s1 · · · sm]> with si ∈ IRn and responses
Y = [y1 · · · ym]> with yi ∈ IRq. The data is assumed to satisfy the normalization
conditions1

µ[S:,j] = 0, V
[
S:,j, S:,j

]
= 1, j = 1, . . . , n ,

µ[Y:,j] = 0, V
[
Y:,j, Y:,j

]
= 1, j = 1, . . . , q ,

(2.1)

where X:,j is the vector given by the jth column in matrix X, and µ[·] and V
[·, ·]

denote respectively the mean and the covariance.

Following [9] we adopt a model ŷ that expresses the deterministic response y(x)∈ IRq,
for an n dimensional input x∈D⊆ IRn, as a realization of a regression model F and

1The user does not have to think of this: The first step in the model construction is to normalize
the given S, Y so that (2.1) is satisfied, see (5.1) below.

1

a random function (stochastic process),

ŷ`(x) = F(β:,`, x) + z`(x), ` = 1, . . . , q . (2.2)

We use a regression model which is a linear combination of p chosen functions
fj : IRn 7→ IR,

F(β:,`, x) = β1,`f1(x) + · · · βp,`fp(x)

= [f1(x) · · · fp(x)] β:,`

≡ f(x)>β:,` . (2.3)

The coefficients {βk,`} are regression parameters.

The random process z is assumed to have mean zero and covariance

E
[
z`(w)z`(x)

]
= σ2

` R(θ, w, x), ` = 1, . . . , q (2.4)

between z(w) and z(x), where σ2
` is the process variance for the `th component

of the response and R(θ, w, x) is the correlation model with parameters θ. An
interpretation of the model (2.2) is that deviations from the regression model, though
the response is deterministic, may resemble a sample path of a (suitably chosen)
stochastic process z. In the following we will focus on the kriging predictor for y.

First, however, we must bear in mind that the true value can be written as

y`(x) = F(β:,`, x) + α(β:,`, x) , (2.5)

where α is the approximation error. The assumption is that by proper choice of β
this error behaves like “white noise” in the region of interest, i.e., for x∈D.

2.1. The Kriging Predictor

For the set S of design sites we have the expanded m×p design matrix F with
Fij = fj(si),

F = [f(s1) · · · f(sm)]> , (2.6)

with f(x) defined in (2.3). Further, define R as the matrix R of stochastic-process
correlations between z’s at design sites,

Rij = R(θ, si, sj), i, j = 1, . . . , m . (2.7)

At an untried point x let

r(x) = [R(θ, s1, x) · · · R(θ, sm, x)]> (2.8)

be the vector of correlations between z’s at design sites and x.

Now, for the sake of convenience, assume that q = 1, implying that β = β:,1 and
Y = Y:,1, and consider the linear predictor

ŷ(x) = c>Y , (2.9)

2

with c = c(x)∈ IRm. The error is

ŷ(x)− y(x) = c>Y − y(x)

= c>(Fβ + Z)− (f(x)>β + z)

= c>Z − z +
(
F>c− f(x)

)>
β ,

where Z = [z1 . . . zm]> are the errors at the design sites. To keep the predictor
unbiased we demand that F>c− f(x) = 0, or

F>c(x) = f(x) . (2.10)

Under this condition the mean squared error (MSE) of the predictor (2.9) is

ϕ(x) = E
[
(ŷ(x)− y(x))2]

= E
[(

c>Z − z
)2]

= E
[
z2 + c>ZZ>c− 2c>Zz

]
= σ2

(
1 + c>Rc− 2c>r

)
. (2.11)

The Lagrangian function for the problem of minimizing ϕ with respect to c and
subject to the constraint (2.10) is

L(c, λ) = σ2
(
1 + c>Rc− 2c>r

)− λ>(F>c− f) . (2.12)

The gradient of (2.12) with respect to c is

L′c(c, λ) = 2σ2(Rc− r)− Fλ ,

and from the first order necessary conditions for optimality (see e.g. [7, Section 12.2])
we get the following system of equations[

R F
F> 0

] [
c

λ̃

]
=

[
r
f

]
, (2.13)

where we have defined

λ̃ = − λ

2σ2
.

The solution to (2.13) is

λ̃ = (F>R−1F)−1(F>R−1r − f) ,

c = R−1(r − Fλ̃) .
(2.14)

The matrix R and therefore R−1 is symmetric, and by means of (2.9) we find

3

ŷ(x) = (r − Fλ̃)>R−1Y

= r>R−1Y − (F>R−1r − f)>(F>R−1F)−1F>R−1Y . (2.15)

In Section 3 we show that for the regression problem

Fβ ' Y

the generalized least squares solution (with respect to R) is

β∗ = (F>R−1F)−1F>R−1Y ,

and inserting this in (2.15) we find the predictor

ŷ(x) = r>R−1Y − (F>R−1r − f)>β∗

= f>β∗ + r>R−1(Y − Fβ∗)

= f(x)>β∗ + r(x)>γ∗ . (2.16)

For multiple responses (q > 1) the relation (2.16) hold for each column in Y , so
that (2.16) holds with β∗ ∈ IRp×q given by (2.15) and γ∗ ∈ IRm×q computed via the
residuals, Rγ∗ = Y − Fβ∗.

Note that for a fixed set of design data the matrices β∗ and γ∗ are fixed. For every
new x we just have to compute the vectors f(x) ∈ IRp and r(x) ∈ IRm and add two
simple products.

Getting an estimate of the error involves a larger computational work. Again we
first let q = 1, and from (2.11) and (2.14) we get the following expression for the
MSE of the predictor,

ϕ(x) = σ2
(
1 + c>(Rc− 2r)

)
= σ2

(
1 + (Fλ̃− r)>R−1(Fλ̃ + r)

)
= σ2

(
1 + λ̃>F>R−1Fλ̃− r>R−1r

)
= σ2

(
1 + u>(F>R−1F)−1u− r>R−1r

)
. (2.17)

where u = F>R−1r − f and σ2 is found by means of (3.7) below. This expression
generalizes immediately to the multiple response case: for the `th response function
we replace σ by σ`, the process variance for `th response function. Computational
aspects are given in Section 3.1.

Remark 2.1.1. Let x = si, the ith design site. Then r(x) = R:,i, the ith column
of R, and R−1r(x) = ei, the ith column of the unit matrix, ei = I:,i. Using these
relations and (2.6) in (2.16) we find

ŷ(si) = f(si)
>β∗ + r(si)

>R−1(Y − Fβ∗)

= f(si)
>β∗ + e>i (Y − Fβ∗)

= f(si)
>β∗ + yi − Fi,:β

∗ = yi .

4

This shows that the Kriging predictor interpolates the design data. Further, in
(2.17) we get u = F>ei − f(si) = 0 and the associated MSE

ϕ(si) = σ2(1−R:,i
>ei) = σ2(1−Rii) = 0 ,

since Rii = 1.

Remark 2.1.2. As indicated by the name MSE (mean squared error) we expect that
ϕ(x) ≥ 0, but in (2.17) it may happen that r>R−1r > 1+u>(F>R−1F)−1u, in which
case ϕ(x) < 0. This point needs further investigation, but as a first explanation we
offer the following: Equation (2.11) is based on the assumption that the difference
between the regression model and the true value is “white noise”, and if there is
significant approximation error, (2.5), then this assumption and its implications do
not hold.

Remark 2.1.3. From (2.16) it follows that the gradient

ŷ′ =

[
∂ŷ

∂x1

· · · ∂ŷ

∂xn

]>

can be expressed as
ŷ′(x) = Jf (x)>β∗ + Jr(x)>γ∗ , (2.18)

where Jf and Jr is the Jacobian of f and r, respectively,

(Jf (x))ij =
∂fi

∂xj

(x), (Jr(x))ij =
∂R
∂xj

(θ, si, x) . (2.19)

From (2.17) it follows that the gradient of the MSE can be expressed as

ϕ′(x) = 2σ2
(
(F>R−1F)−1u′ −R−1r′

)
= 2σ2

(
(F>R−1F)−1(F>R−1r′ − Jfβ

∗)−R−1r′
)

. (2.20)

These expressions are implemented in the toolbox, see Section 5.2.

2.2. Regression Models

The toolbox provides regression models with polynomials of orders 0, 1 and 2. More
specific, with xj denoting the jth component of x,

Constant, p = 1 :
f1(x) = 1 , (2.21)

Linear, p = n+1 :

f1(x) = 1, f2(x) = x1, . . . , fn+1(x) = xn , (2.22)

5

Quadratic, p = 1
2
(n+1)(n+2) :

f1(x) = 1

f2(x) = x1, . . . , fn+1(x) = xn

fn+2(x) = x2
1, . . . , f2n+1(x) = x1xn

f2n+2(x) = x2
2, . . . , f3n(x) = x2xn

· · · · · · fp(x) = x2
n .

(2.23)

The corresponding Jacobians are (index n×q denotes the size of the matrix and O
is the matrix of all zeros)

constant : Jf = [On×1] ,

linear : Jf = [On×1 In×n] ,

quadratic : Jf = [On×1 In×n H] ,

where we illustrate H ∈ IRn×(p−n−1) by

n = 2 : H =

[
2x1 x2 0
0 x1 2x2

]
,

n = 3 : H =

 2x1 x2 x3 0 0 0

0 x1 0 2x2 x3 0
0 0 x1 0 x2 2x3

 .

2.3. Correlation Models

As [9] we restrict our attention to correlations of the form

R(θ, w, x) =
n∏

j=1

Rj(θ, wj − xj) ,

i.e., to products of stationary, one-dimensional correlations. More specific, the tool-
box contains the following 7 choices

Name Rj(θ, dj)
exp exp(−θj|dj|)
expg exp(−θj|dj|θn+1), 0 < θn+1 ≤ 2

gauss exp(−θjd
2
j)

lin max{0, 1−θj|dj|}
spherical 1− 1.5ξj + 0.5ξ3

j , ξj = min{1, θj|dj|}
cubic 1− 3ξ2

j + 2ξ3
j , ξj = min{1, θj|dj|}

spline ς(ξj), (2.24) ξj = θj|dj|
Table 2.1. Correlation functions. dj = wj − xj

6

The spline correlation model is defined by

ς(ξj) =

1− 15ξ2
j + 30ξ3

j for 0 ≤ ξj ≤ 0.2
1.25(1− ξj)

3 for 0.2 < ξj < 1
0 for ξj ≥ 1

(2.24)

Some of the choices are illustrated in Figure 2.1 below. Note that in all cases the
correlation decreases with |dj| and a larger value for θj leads to a faster decrease. The
normalization (2.1) of the data implies that |sij| <∼ 1 and therefore we are interested
in cases where |dj| <∼ 2, as illustrated in the figure.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
EXP

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
GAUSS

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
LIN

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
SPLINE

Figure 2.1. Correlation functions for 0 ≤ dj ≤ 2.
Dashed, full and dash-dotted line: θj = 0.2, 1, 5

The correlation functions in Table 2.1 can be separated into two groups, one con-
taining functions that have a parabolic behavior near the origin (gauss, cubic and
spline), and the other containing functions with a linear behaviour near the origin
(exp, lin and spherical). The general exponential expg can have both shapes,
depending on the last parameter: θn+1 = 2 and θn+1 = 1 gives the Gaussian and the
exponential function, respectively.

The choice of correlation function should be motivated by the underlying phe-
nomenon, e.g., a function we want to optimize or a physical process we want to
model. If the underlying phenomenon is continuously differentiable, the correlation
function will likely show a parabolic behaviour near the origin, which means that the
Gaussian, the cubic or the spline function should be chosen. Conversely, physical
phenomena usually show a linear behaviour near the origin, and exp, expg, lin or
spherical would usually perform better, see [2]. Also note, that for large distances

7

the correlation is 0 according to the linear, cubic, spherical and spline functions,
while it is asymptotically 0 when applying the other functions.

Often the phenomenon is anisotropic. This means that different correlations are
identified in different directions, i.e., the shape of the functions in Figure 2.1 differ
between different directions. This is accounted for in the functions in Table 2.1,
since we allow different parameters θj in the n dimensions.

Assuming a Gaussian process, the optimal coefficients θ∗ of the correlation function
solves

min
θ
{ ψ(θ) ≡ |R| 1

m σ2 } , (2.25)

where |R| is the determinant of R. This definition of θ∗ corresponds to maximum
likelihood estimation. In Figure 2.2 we illustrate the typical behaviour of the func-
tions involved in (2.25).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5
σ2 |R|1/m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−2

10
0

10
2

10
4

|R|1/m

σ2

Figure 2.2. Typical behaviour of ψ, |R| 1
m and σ2 for 0 < θj ≤ 1.

Data normalized as defined in (5.1)

Note that |R| 1
m is monotonously increasing in the interval. This is in accordance

with expectation, since Rθ is close to the unit matrix for large θ, while it is indefinite
for small θ. For θ = 0, R is the matrix of all ones, which has rank one. In case of
an indefinite R we define σ2 = ψ(θ) = ”∞”.

See [4] for a thorough discussion of properties of different correlation models and
the optimization problem (2.25).

8

3. Generalized Least Squares Fit

In this section we take a linear algebra view of generalized least squares estimation,
and get results that are well known in statistical literature, where they are derived
with probabilistic tools.

Consider an m-vector Y with outcomes of a stochastic process and let

y = Fβ + e , (3.1)

where F ∈ IRm×p (with p < m) is given. Assume that

E
[
ei

]
= 0, E

[
eiej

]
= σ2Rij , (3.2)

where Rij is the (i, j)th element in the covariance matrix R, which is assumed to be
known. Note that we can express (3.2) in matrix-vector form

E
[
e
]

= 0, E
[
ee>

]
= σ2R .

First, assume that the errors are uncorrelated and all have the same variance. This
is equivalent with R = I, and the maximum likelihood estimate of the parameter
vector is the least squares solution, i.e., β∗ is the solution to the simple normal
equations

(F>F)β∗ = F>Y , (3.3)

The corresponding maximum likelihood estimate of the variance is

σ2 =
1

m
(Y − Fβ∗)>(Y − Fβ∗) . (3.4)

To get a central estimate of the variance, the denominator m should be replaced by
m−p, the number of degrees of freedom.

Next, assume that the errors are uncorrelated, but have different variance, i.e.,
E

[
eiei

]
= σ2

i and E
[
eiej

]
= 0 for i 6= j. Then R is the diagonal matrix

R = diag

(
σ2

1

σ2
, . . . ,

σ2
m

σ2

)
.

We introduce the weight matrix W given by

W = diag

(
σ

σ1

, . . . ,
σ

σm

)
⇔ W 2 = R−1 , (3.5)

and the weighted observations Ỹ = WY = WFβ + ẽ are easily seen to satisfy

E
[
ẽ
]

= 0, E
[
ẽẽ>

]
= W E

[
ee>

]
W> = σ2I , (3.6)

9

i.e., this transformed set of observations satisfies the assumptions for the simplest
case, and it follows that β∗ and σ are found by replacing F, Y in (3.3) – (3.4) by
WF, WY . This results in the weighted normal equations,

(F>W 2F)β∗ = F>W 2Y, σ2 =
1

m
(Y − Fβ∗)>W 2(Y − Fβ∗) .

From (3.5) we see that these relations can be expressed as

(F>R−1F)β∗ = F>R−1Y ,

σ2 =
1

m
(Y − Fβ∗)>R−1(Y − Fβ∗) .

(3.7)

Finally, consider the case where the errors have nonzero correlation, i.e., R is not
diagonal. For any α ∈ IRm let η = α>Y be a linear combination of the elements in
Y . Then

η = α>Fβ + ε with ε = α>e ,

and
E

[
ε2

]
= E

[
α>e e>α

]
= σ2α>Rα .

Since E
[
ε2

]
> 0 whenever α 6= 0, we have shown that R is positive definite. Further,

from its definition it is immediately seen that R is symmetric. These two properties
imply that we can write it in factorized form,

R = CC> , (3.8)

where the matrix C> may be chosen as the Cholesky factor. As in (3.6) we see that
the “decorrelation transformation”

ẽ = C−1e = C−1Y − C−1Fβ ≡ Ỹ − F̃ β (3.9)

yields E
[
ẽ
]

= 0 and E
[
ẽẽ>

]
= σ2I, and by similar arguments we see that (3.7) is

also applicable in this general case.

3.1. Computational Aspects

The formulation (3.7) should not be used directly for practical computation if the
problem is large and/or ill-conditioned. Instead β∗ should be found by orthogonal
transformation as the least squares solution to the overdetermined system

F̃ β ' Ỹ , (3.10)

with the matrix and right-hand side obtained by solving the matrix equations

CF̃ = F, CỸ = Y .

The least squares solution to (3.10) can be found in the following steps,

10

1. Compute the “economy size” (or “thin”) QR factorization of F̃ (see e.g. [1,
Section 5.2.6]),

F̃ = QG> , (3.11)

where Q∈ IRm×p has orthonormal columns and G> ∈ IRp×p is upper triangular.

2. Check that G and thereby F has full rank. If not, this is an indication that
the chosen regression functions were not sufficiently linearly independent, and
computation should stop. Otherwise, compute the least squares solution by
back substitution in the system

G>β∗ = Q>Ỹ . (3.12)

The auxiliary matrices can also be used to compute the process variance (3.7)

σ2
` =

1

m
‖Ỹ:,` − F̃ β∗:,`‖2

2 (3.13)

and the MSE (2.17),

ϕ`(x) = σ2
`

(
1 + u>(F̃>F̃)−1u− r̃>r̃

)
= σ2

`

(
1 + u>(G G>)−1u− r̃>r̃

)
= σ2

` (1 + ‖G−1u‖2
2 − ‖r̃‖2

2) (3.14)

with
r̃ = C−1r, u = F>R−1r − f = F̃>r̃ − f ,

and we have used (3.11) in the first transformation: F̃>F̃ = G Q>Q G> = G G>

since Q has orthonormal columns.

For large sets of design sites R will be large, and – at least with the last four choices
in Table 2.1 – it can be expected to be sparse. This property is preserved in the
Cholesky factor, but R−1 = C−T C−1 is dense.

An alternative to the Cholesky factor in (3.8) is the eigenvector-eigenvalue decom-
position

R = V ΛV > with V >V = I, Λ = diag(λ1, . . . , λm) , (3.15)

corresponding to C = V Λ1/2, where Λ1/2 = diag(
√

λ1, . . . ,
√

λm); all the λj are
real and positive. However, this factorization is more costly to compute, and the
eigenvector matrix V is often a dense matrix.

Depending on the choice of R and the parameters θ the matrix R may be vey ill-
conditioned. This is investigated in [4, sections 4-5], and in order to reduce effects of
rounding errors the implementation uses a modified Cholesky factorization, where
(3.8) is replaced by

CC> = R + µI with µ = (10+m)εM , (3.16)

where εM is the socalled machine accuracy (or unit round-off), εM = 2−52 ' 2.22 ·
10−16 in Matlab.

11

4. Experimental Design

Experimental design arises in this context in deciding how to select the inputs at
which to run the deterministic computer code in order to most efficiently control or
reduce the statistical uncertainty of the computed prediction. This section intro-
duces two algorithms with “space filling” properties. Note that Latin Hypercube
designs are based on random numbers, and the other algorithm produces deter-
ministic designs. See [6], [8], [9] or [10] for further discussion and more advanced
designs.

4.1. Rectangular Grid

Assume that the region D∈ IRn under interest is a box, defined by `j ≤ xj ≤uj,
j = 1, . . . , n. The simplest distribution of design sites is defined by all different
combinations of

s
(i)
j = `j + k

(i)
j

uj − `j

νj

, k
(i)
j = 0, 1, . . . , νj ,

where the {νj} are integers. If all νj = ν, then the number of these design points is
(ν+1)n.

4.2. Latin Hypercube Sampling

Latin hypercube sampling, due to McKay et al. [5], is a strategy for generating
random sample points ensuring that all portions of the vector space is represented.
Consider the case where we wish to sample m points in the n dimensional vector
space D∈ IRn. The Latin hypercube sampling strategy is as follows:

1. Divide the interval of each dimension into m non-overlapping intervals having
equal probability (here we consider a uniform distribution, so the intervals
should have equal size).

2. Sample randomly from a uniform distribution a point in each interval in each
dimension.

3. Pair randomly (equal likely combinations) the point from each dimension.

12

5. Reference Manual

This section is a presentation of the functions in the DACE toolbox. The contents
are

5.1. Model Construction
dacefit Find the DACE model to a given set of design data

and given regression and correlation models

5.2. Evaluate the Model
predictor Use the DACE model to predict the function at one

or more untried sites

5.3. Regression Models
regpoly0 Zero order ploynomial
regpoly1 First order ploynomial
regpoly2 Second order ploynomial

5.4. Correlation Models
correxp Exponential
correxpg Generalized exponential
corrgauss Gaussian
corrlin Linear
corrspherical Spherical
corrspline Cubic spline

5.5. Experimental Design
gridsamp Design sites in a rectangular grid
lhsamp Latin hypercube distributed random points

5.6. Auxiliary Functions
dsmerge Merge data for multiple design sites

5.7. Data Files
data1.mat Example data S and Y

In the following we give details of the Matlab functions. The file data1.mat is
used in the first example of Section 6.

Installation: Obtain the archive dace.zip containing the software at the web-site
http://www.imm.dtu.dk/∼hbn/dace
Unzip the archive at a convenient place. On UNIX systems use the command unzip

dace.zip, on Windows systems use WinZip or a similar program.

The archive contains a folder named dace containing the software and this docu-
mentation. The path to the software (i.e., to the dace folder) should be included in
the Matlab search path. Use either the pathtool or the addpath command. See
the Matlab manual for further directions.

13

5.1. Model Construction

Purpose: Find the DACE model to a given set of design data and given regression
and correlation models.

Call:
[dmodel, perf] = dacefit(S, Y, regr, corr, theta0)

[dmodel, perf] = ...

dacefit(S, Y, regr, corr, theta0, lob, upb)

Input parameters:
S Design sites: an m×n array with S(i, :) = s>i .
Y m×q array with responses at S.
regr Handle to a function like (5.2) below.
corr Handle to a function like (5.3) below.
theta0 If lob and upb are not present, then theta0 should hold the

correlation function parameters, θ.
Otherwise theta0 should hold initial guess on θ.
See Section 5.4 about permissible lengths of theta0.

lob,upb Optional. If present, then they should be vectors of the same
length as theta0 and should hold respectively lower and upper
bounds on θ.
If they are not present, then θ is given by the values in theta0.

Output:
dmodel DACE model. Struct with the elements

regr handle to the regression function,
corr handle to the correlation function,
theta correlation function parameters,
beta generalized least squares estimate,

β∗ in (2.16)
,

gamma correlation factors, γ∗ in (2.16),
sigma2 estimate of the process variance σ2,
S scaled design sites, see (5.1) below,
Ssc 2×n array with scaling factors for design

sites,

Ysc 2×q array with scaling factors for design
responses,

C Cholesky factor of correlation matrix, (3.16),

Ft decorrelated regression matrix, F̃ in (3.10),
G matrix G from (3.11).

perf Information about the optimization.
Struct with the elements
nv Number of evaluations of objective function (2.25) used

to find θ∗,

14

perf Array with nv columns with current values of
[θ; ψ(θ); type]. |type| = 1, 2 or 3, indicate “start”,
“explore” or “move”.

A negative value for type indicates an uphill trial step.

Remarks. The first step in dacefit is to normalize the input so that (2.1) is
satisfied,

mS = mean(S); sS = std(S);

for j=1:n, S(:,j) = (S(:,j) - mS(j))/sS(j); end

mY = mean(Y); sY = std(Y);

for j=1:q, Y(:,j) = (Y(:,j) - mY(j))/sY(j); end

(5.1)

The values in mS and sS are returned in dmodel.Ssc, and
dmodel.Ysc = [mY; sY].

All computation is performed on the normalized data, but the process variance is
for the original data, (dmodel.sigma2)j = sY2

j ·σ2
j , where σ2

j is the estimator for the
jth column of the normalized responses.

The matrices R and C are stored in sparse format, and it is exploited that we only
need to store the upper triangle of the symmetric matrix R.

As indicated in Section 2.3, the determination of the optimal correlation parameters
θ∗ is an optimization problem with box constraints, `j ≤ θj ≤ uj. We have developed
a simple but efficient algorithm with successive coordinate search and pattern moves,
as in the Hooke & Jeeves method, see e.g. [3, Section 2.4]. Details are given in [4,

Section 6]. The objective function ψ(θ) ≡ |R| 1
m σ2 was presented in [9] for the case

q = 1. In the multiple response case we let σ2 := σ2
1 + · · ·+σ2

q , with each component
of σ2 computed by (3.13).

5.2. Evaluate the Model

Purpose: Use the DACE model to predict the function at one or more untried
sites.

Call: y = predictor(x, dmodel)

[y, or] = predictor(x, dmodel)

[y, dy, mse] = predictor(x, dmodel)

[y, dy, mse, dmse] = predictor(x, dmodel)

Input parameters:
x m trial site(s) with n dimensions.

If m = 1 and n> 1, then both a row and a column vector is
accepted. Otherwise x must be an m×n array with the sites
stored rowwise.

dmodel Struct with the DACE model, see Section 5.1.

15

Output:
y Predicted response, y(i) = ŷ(x(i,:)), see (2.16).
or Optional result. Depends on the number of sites,

m = 1: gradient ŷ′, (2.18). Column vector with n elements,
m > 1: m-vector with estimated MSE, (3.14).

dy Optional result, allowed only if m = 1: n×q array with Jacobian
of ŷ (gradient ŷ′(x) (2.18) if q = 1).

mse Optional result, allowed only if m = 1: estimated MSE, (3.14).
dmse Optional result, allowed only if m = 1: n×q array with Jacobian

of ϕ (gradient ϕ′(x) (2.20) if q = 1).

Remarks. The computation is performed on normalized trial sites, cf. (5.1), but
the returned results are in the original “units”.

The special treatment of optional results when there is only one trial site was made
so that predictor can be used as the objective function in a Matlab optimization
function demanding the gradient.

5.3. Regression Models

The toolbox provides functions that implement the polynomials discussed in Section
2.2. All of these conform with the specifications given in (5.2) at the end of this
section.

Purpose: Get values of zero order polynomial, (2.21).

Call: f = regpoly0(S)

[f, df] = regpoly0(S)

Input parameter:
S m×n matrix with design sites stored rowwise.

Output:
f m×1 vector with all ones.
df Optional result, Jacobian for the first site: n×1 vector with all

zeros.

Purpose: Get values of first order polynomials, (2.22).

Call: f = regpoly1(S)

[f, df] = regpoly1(S)

Input parameter:
S m×n matrix with design sites stored rowwise.

Output:
f m×(n+1) matrix with f(i,j) = fj(xi).
df Optional result, Jacobian for the first site, Section 2.2.

16

Purpose: Get values of second order polynomials, (2.23).

Call: f = regpoly2(S)

[f, df] = regpoly2(S)

Input parameter:
S m×n matrix with design sites stored rowwise.

Output:
f m×p matrix with f(i,j) = fj(xi); p = 1

2
(n+1)(n+1).

df Optional result, Jacobian for the first site, Section 2.2.

Remark. The user may supply a new regression model in the form of a function
that must have a declaration of the form

function [f, df] = regress(S) (5.2)

For a given set of m sites S with the ith site stored in S(i,:) it should return the
m×p matrix f with elements f(i,j) = fj(S(i,:)), cf. (2.3). If it is called with
two output arguments, then the Jacobian Jf , (2.19), should be returned in df. This
option is needed only if the predictor is called with the option of returning also the
gradient.

5.4. Correlation Models

The toolbox provides seven functions that implement the models presented in Table
2.1, see the list on page 13. All of these conform with the specifications given in
(5.3) at the end of this section. We only present one of them in detail,

Purpose: Get values of the function denoted exp in Table 2.1.

Call: r = correxp(theta, d)

[r, dr] = correxp(theta, d)

Input parameters:
theta Parameters in the correlation function.

A scalar value is allowed. This corresponds to an isotropic
model: all θj equal to theta. Otherwise, the number of ele-
ments in theta must equal the dimension n given in d.

d m×n array with differences between sites.

Output:
r Correlations, r(i) = R(θ, d(i,:)).
dr Optional result. m×n array with the Jacobian Jr, (2.19).

Remarks. The Jacobian is meaningful only when d holds the differences between
a point x and the design sites, as given in S, di,: = x>− Si,:. The expression given

17

in Table 2.1 can be written as

ri =
n∏

j=1

exp(−θj|dij|) = exp

(
n∑

j=1

−θjτij(xj − Sij)

)
,

where τij is the sign of d
(i)
j . The corresponding Jacobian is given by

(Jr)ij = −θj · τij · ri .

Remarks. The handling of isotropic models is similar in corrgauss, corrgauss,
corrlin, corrspherical and corrspline, while correxpg needs special treatment
of the exponent θn+1. Here theta must be a vector with either n+1 or 2 elements.
In the latter case θj = theta(1), j = 1, . . . , n and θn+1 = theta(2).

The user may supply a new correlation model in the form of a function that must
have a declaration of the form

function [r, dr] = corr(theta, d) (5.3)

For a given set of parameters theta = θ and differences d(i,:) = x>−Si,: it should
return the column vector r with elements r(i) = R(θ, x, Si,:). If it is called with
two output arguments, then the Jacobian Jr, (2.19), should be returned in dr. This
option is needed only if the predictor is called with the option of returning also the
gradient.

5.5. Experimental Design

Currently the toolbox provides implementations of the two designs of Section 4:

Purpose: Get design sites in a rectangular grid, Section 4.1.

Call: X = gridsamp(range, q)

Input parameters:
range 2×n with lower and upper limits, range(:,j) = [`j uj]

>.

q Vector with q(j) holding the number of intervals in the jth di-
rection. If q is a scalar, then it uses this number in all directions.

Output:
X m×n array with grid points.

18

Purpose: Compute latin hypercube distributed random points, Section
4.2.

Call: S = lhsamp

S = lhsamp(m)

S = lhsamp(m, n)

Input parameters:
m Number of sample points to generate. If not present, then m=1.

n Number of dimensions. If not present, then n=m.

Output:
S m×n matrix with the generated sample points chosen from uni-

form distributions on m subdivisions of the interval]0.0, 1.0[.

5.6. Auxiliary Functions

The Kriging model presumes distinct design sites, and the toolbox provides a func-
tion that can compress the data if this condition is not satisfied.

Purpose: Merge data for multiple design sites.

Call: [mS, mY] = dsmerge(S, Y)

[mS, mY] = dsmerge(S, Y, ds)

[mS, mY] = dsmerge(S, Y, ds, nms)

[mS, mY] = dsmerge(S, Y, ds, nms, wtds)

[mS, mY] = dsmerge(S, Y, ds, nms, wtds, wtdy)

Input parameters:
S m×n array with design sites stored rowwise.
Y m×q array with responses at S.
ds Threshold for equal, normalized sites. Default is 1e-14.

nms Norm, in which the distance is measured.
nms = 1 1-norm (sum of absolute coordinate differences)

2 2-norm (Euclidean distance) (default)
wtds What to do with the S-values in case of multiple points.

wtds = 1 return the mean value (default)
2 return the median value
3 return the ’cluster center’

wtdy What to do with the Y-values in case of multiple points.

wtdy = 1 return the mean value (default)
2 return the median value
3 return the ’cluster center’ value
4 return the minimum value
5 return the maximum value

19

Output:
mS Compressed design sites, with multiple points merged according

to wtds.

mY Responses, compressed according to wtdy.

5.7. Data Files

Currently the toolbox contains one test data set, illustrated in Section 6. The
command

load data1

makes the arrays S ∈ IR75×2 and Y ∈ IR75×1 available in the workspace; i.e., m = 75,
n = 2, q = 1. The design sites stored in S are sampled in the two-dimensional area
[0, 100]2.

20

6. Examples of Usage

6.1. Work-through Example

Example 1sec:Ex1This example demonstrates simple usage of the two most impor-
tant functions in the toolbox, namely dacefit and predictor. The example shows
how you can obtain a surface approximation and corresponding error estimates for
the approximation to a given data set. The example also shows how gradient ap-
proximations at given points can be obtained for both predictor and error estimate.

We start by loading the data set data1.mat provided with the toolbox, cf. Section 5.7,

load data1

Now the 75×2 array S and 75×1 array Y are present in the workspace.

We choose the poly0 regression function and the gauss correlation function. As-
suming anisotropy we choose the following starting point and bounds for θ

theta = [10 10]; lob = [1e-1 1e-1]; upb = [20 20];

We are now ready to make the model by calling dacefit,

[dmodel, perf] = ...

dacefit(S, Y, @regpoly0, @corrgauss, theta, lob, upb)

From the returned results we can extract information about the generated model.
The number of evaluations of the objective function (2.25) to find θ∗ and the values
of θ∗ are

perf.nv = 15

dmodel.theta = [3.5355 2.1022]

The generalized least squares estimate β∗ and the estimated process variance σ2 are

dmodel.beta = 0.0918

dmodel.sigma2 = 3.3995

Having the model stored in the structure array dmodel we may use it for prediction
at new (untried) sites. We generate a grid of points on which to evaluate the
predictor (2.16). We choose a 40×40 mesh of points distributed equidistantly in
the area [0, 100]2 covered by the design sites, cf. Section 5.7, and call the kriging
predictor with the mesh points and the dmodel,

21

X = gridsamp([0 0;100 100], 40);

[YX MSE] = predictor(X, dmodel);

The returned vector YX of predicted values at the mesh and MSE the mean squared
error for each predicted point. To plot the results we reshape the coordinate matrix
and YX to match the grid

X1 = reshape(X(:,1),40,40); X2 = reshape(X(:,2),40,40);

YX = reshape(YX, size(X1));

Mesh plot of the predicted values at the grid points, and add the design sites

figure(1), mesh(X1, X2, YX)

hold on,

plot3(S(:,1),S(:,2),Y,’.k’, ’MarkerSize’,10)

hold off

The resulting plot is shown in Figure 6.1.

0
20

40
60

80
100

0

20

40

60

80

100
32

34

36

38

40

42

44

46

Figure 6.1. Predicted values

For comparison, the front page shows the predictor obtained with the model found
by the command

[emodel perf] = dacefit(S, Y, @regpoly0, @correxp, 2)

22

i.e., the exp model from Table 2.1 with θ1 = θ2 = 2.

Next, to get a mesh plot of the mean squared error in a new figure window we issue
the commands

figure(2), mesh(X1, X2, reshape(MSE, size(X1)))

The resulting plot is shown in Figure 6.2. From the Figure we note how areas with
few design sites (e.g. the center area) have high MSE values.

0
20

40
60

80
100

0

20

40

60

80

100
1

1.5

2

2.5

3

3.5

Figure 6.2. Mean squared error

The predictor function also allows for prediction of gradients provided a single
point, e.g. here is how to predict the gradient at the first design site,

[y, dy] = predictor(S(1,:), dmodel)

y = 34.1000

dy = 0.2526

0.1774

The gradient of MSE is also available, e.g. the for the point (50, 50),

[y, dy, mse, dmse] = predictor([50 50], dmodel)

y = 38.0610

dy = -0.0141

-0.0431

mse = 0.7526

dmse = 0.0004

0.0187

23

6.2. Adding a Regression Function

This example shows how a user provided regression function can be added to the
toolbox. Adding a correlation function is done in virtually the same way, for which
reason a specific example of such is not given here.

As noted in the reference manual in Section 5, the regression functions and the
correlation functions must be implemented with a specific interface. Below is an
example on how to implement a reduced (without the cross-dimensional products)
second order polynomial regression function f(x) = [1 x1 . . . xn x2

1 . . . x2
n]>.

function [f, df] = regpoly2r(S)

%REGPOLY2R Reduced 2nd order polynomial regr. function

% Call: [f, df] = regpoly2(S)

% S : m*n matrix with design sites

% f = [1 S S^2]

% df is the Jacobian at the first point (first row in S)

[m n] = size(S);

f = [ones(m,1) S S.^2];

if nargout > 1

df = [zeros(n,1) eye(n) 2*diag(S(1,:))];

end

Note that the array f is m×p with p = 1+2n. The last part with the gradient
calculation is needed only if the gradient feature of the predictor function is used.

7. Notation

m, n number of design sites and their dimensionality

p number of basis functions in regression model

q dimensionality of responses

F(β, x) regression model, F(β, x) = f(x)>β, see Section 2

R(θ, w, x) correlation function, see Section 2.3

C factorization (e.g. Cholesky) of R, R = CT C

E
[·] expectation operator

fj basis function for regression model

f p-vector, f(x) = [f1(x) · · · fp(x)]>

24

F expanded design m×p-matrix, see (2.6)

F̃ , Ỹ transformed data, see (3.9)

R m×m-matrix of stochastic-process correlations,
see (2.7)

r m-vector of correlations, see (2.8)

S m×n matrix of design sites, see Section 2

Si,:, S:,j ith row and jth column in S, respectively

si ith design site, vector of length n. s>i = Si,:

V
[
w, x

]
covariance between w and x (2.4)

w, x n-dimensional trial points

xj jth component in x

Y m×q-matrix of responses, see Section 2

yi response at ith design site, q-vector

ŷ predicted response, see (2.2)

z q-dimensional stochastic process, see (2.2)

β p×q-matrix of regression parameters, see (2.2), (2.16)

γ m×q-matrix of correlation constants, see (2.16)

θ parameters of correlation model, q-vector

σ2 process variance (of z), see (2.4)

ϕ(x) mean squared error of ŷ, see (2.11), (3.14)

References

[1] G. Golub, C. Van Loan, Matrix Computations. Johns Hopkins University Press,
Baltimore, USA, 3rd edition, 1996.

[2] E.H. Isaaks, R.M. Srivastava, An Introduction to Applied Geostatistics. Oxford
University Press, New York, USA, 1989.

[3] J. Kowalik, M.R. Osborne, Methods for Unconstrained Optimization Problems.
Elsevier, New York, USA, 1968.

[4] S.N. Lophaven, H.B. Nielsen, J. Søndergaard, Aspects of the Matlab Toolbox
DACE. Report IMM-REP-2002-13, Informatics and Mathematical Modelling,
DTU. (2002), 44 pages. Available as
http://www.imm.dtu.dk/∼hbn/publ/TR0213.ps

25

[5] M.D. McKay, W.J. Conover, R.J. Beckman, A comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output from a Computer
Code, Technometrics, vol. 21, no. 2, 1979.

[6] W. G. Müller, Collecting Spatial Data. Optimum Design of Experiments for
Random Fields. Physica-Verlag, Heidelberg, Germany, 2001.

[7] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, New York, USA,
1999.

[8] J.A. Royle, D. Nychka, An Algorithm for the Construction of Spatial Coverage
Designs with Implementation in Splus, Computers and Geosciences, vol. 24, no.
5, pp. 479-488, 1998.

[9] J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn, Design and Analysis of Com-
puter Experiments, Statistical Science, vol. 4, no. 4, pp. 409-435, 1989.

[10] T.W. Simpson, J.D. Peplinski, P.N. Koch, J.K. Allen, Metamodels for
Computer-Based Engineering Design: Survey and Recommendations Engineer-
ing with Computers, vol. 17, pp. 129-150, 2001.

26

